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Abstract

Objective: Identify key features of IL-33 immunobiology important in allergic and nonallergic 

airway inflammatory diseases and potential therapeutic strategies to reduce disease burden.

Data Sources: PubMed, clinicaltrials.gov

Study Selections: A systematic and focused literature search was conducted of PubMed from 

March 2021 to December 2021 using keywords to either PubMed or BioMed Explorer including 

IL-33/ST2, genetic polymorphisms, transcription, translation, post-translation modification, 

nuclear protein, allergy, asthma, and lung disease. Clinical trial information on IL-33 was 

extracted from clinicaltrials.gov in August 2021.

Results: In total, 72 publications with relevance to IL-33 immunobiology and/or clinical lung 

disease were identified (allergic airway inflammation/allergic asthma n = 26, non-allergic airway 

inflammation n = 9, COPD n = 8, lung fibrosis n = 10). IL-33 levels were higher in serum, BALF 

and/or lungs across inflammatory lung diseases. Eight studies described viral infections and IL-33 

and 4 studies related to COVID-19. Mechanistic studies (n = 39) including transcript variants 

and post-translational modifications related to the immunobiology of IL-33. Single nucleotide 

polymorphism in IL-33 or ST2 were described in 9 studies (asthma n = 5, inflammatory bowel 

disease n = 1, mycosis fungoides n = 1, ankylosing spondylitis n = 1, coronary artery disease 

n = 1). Clinicaltrials.gov search yielded 84 studies of which 17 were related to therapeutic or 

biomarker relevance in lung disease.

Conclusion: An integral role of IL-33 in the pathogenesis of allergic and nonallergic airway 

inflammatory disease is evident with several emerging clinical trials investigating therapeutic 

approaches. Current data support a critical role of IL-33 in damage signaling, repair and 

regeneration of lungs.
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Introduction

Interleukin-33 (IL-33) is an alarmin that senses damage/activation of epithelial or 

endothelial cells and responds immediately by its release into the cytoplasm and 

extracellular fluids from the nucleus (1). It was first identified in endothelial cells as a 

nuclear protein called NF-HEV (nuclear factor from high endothelial venules)(1), and in 

2005, it was reidentified as a member of the IL-1 family that binds to its orphan receptor 

ST2 (2). Upon binding to ST2 as an extracellular cytokine, IL-33 stimulates type 2 innate 

lymphoid cells (ILC2), mast cells, basophils, and T-helper type 2 (Th2) cells to secrete 

high levels of IL-5, IL-9, and IL-13 (3, 4). These Th2 cytokines are involved in the 

pathogenesis of multiple disease processes including allergy and asthma. Additionally, IL-33 

expression has been implicated in environmental-induced nonallergic airway inflammation 

such as agricultural organic dust exposure (5). Emerging roles for IL-33 include repair, 

inflammation, homeostasis, and fibrosis. However, the precise mechanisms of IL-33 

activation are not well understood and the downstream signaling pathways are complex. 

Understanding immunobiology of IL-33 is necessary to comprehend the clinical relevance 

and potential of this versatile cytokine. This review seeks to connect the relevance of IL-33 

biology in allergic and nonallergic asthma and chronic inflammatory airway diseases to 

current and potential clinical interventions.

IL-33 Signal Transduction

IL-33 is a member of the IL-1 family that consists of 11 members including IL-1α, IL-1β, 

and IL-18 (6). Like many of the family members (e.g. IL-1β and IL-18), IL-33 follows 

an unconventional secretion mechanism (7). Devoid of a hydrophobic signal peptide, it 

is synthesized with a propeptide at the N-terminus, upstream of the IL-1-like cytokine 

domain (1). The mature IL-33 has a single β-trefoil domain that is shared with fibroblast 

growth factors (FGFs) and binds to IL-1 signallingreceptors on their target cells (1). This 

class of receptors typically possess three extracellular immunoglobulin (Ig)-like repeats and 

belong to the greater Toll-IL-1 receptor (TIR) superfamily by virtue of their intracellular 

signaling domain, a distinctive TIR module (8). IL-1RL1 (ST2) is flexible and, hence, 

changes its conformation on binding to IL-33 resulting in signal transduction (9). The 

IL-1 receptor accessory protein (IL-1RAP) is rigid and cannot bind to IL-33 directly, but 

assists the ST2 receptor in ligand binding and signal transduction (9). The heterodimer 

ternary signaling complex with paired TIR domains recruit myeloid differentiation factor 

88 (MyD88), tumor necrosis factor receptor-associated factor 6 (TRAF6), interleukin-1 

receptor-associated kinase (IRAK)1 and 4 to activate nuclear factor kappa B (NF-κB) 

(10) and activator protein 1 (AP-1) (via p38/ERK/JNK pathway) triggering transcription 

of proinflammatory genes (Figure 1). The MyD88 signaling pathway is also critical in 

environmental-associated airway diseases that activate immune responses through TLR 
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recognition pathways (5). In complex agriculture-related organic dust extract exposures, 

IL-33 induction is dependent upon MyD88 signaling (5).

Role of Functional Genetic Polymorphisms

Genome-wide association studies (GWAS) of asthma have led to identification of several 

genetic variants in the IL1RL1 (ST2) gene, but the molecular mechanisms are unclear. 

Two single nucleotide polymorphisms (SNPs) in IL1RL1 - rs1420101 and rs11685480 
have been indicated to regulate plasma sST2 levels in airway epithelial cells and distal 

lung parenchyma, respectively, resulting in an increased risk of classic, type 2, airway 

inflammation in asthmatics (11). In a Brazilian population, IL-33 SNP rs12551256 has been 

shown to be protective in asthma, whereas IL1RL1 SNP rs1041973 is positively correlated 

with increased IL-5 and sIgE levels (12). Another SNP in IL-33, rs1888909, is implicated 

in regulating IL-33 expression in human airway epithelial cells and plasma through 

differential binding of OCT-1 (octamer-binding protein-1) to the asthma-risk allele (13). 

IL-33 receptor SNPs rs1041973 and rs873022 are associated with decreased production 

of sST2 in atopic subjects and regulate expression of the IL1RL1 gene (12), whereas 

rs13048661 (rs13431828) increases asthma risk and is associated with post-bronchiolitis 

asthma in children (14). Several other SNPs in IL-33/ST2 are associated with either 

increased or decreased risk of developing diseases such as inflammatory bowel disease (15), 

mycosis fungoides (16), ankylosing spondylitis (17), obesity and coronary artery disease 

(18). Numerous SNPs are predicted in the IL-33 gene to be associated with functional 

or structural changes (19), leading to potential risk of developing respiratory diseases. 

Future studies understanding associations between IL-33 SNPs and their role in IL-33 

expression and function in various lung diseases could inform future therapeutic approaches 

for asthmatics.

Significance of Splice Variants

Alternative splicing of exons results in several splice variants of IL-33, and some of these 

splice variants are more potent than the full-length IL-33. Deletion of exons 3 and 4 results 

in a splice variant (Δ exon 3,4) that prefers cytoplasmic localization and is also readily 

secreted extracellularly with intact signaling capacity (20). Unlike its full-length counterpart, 

Δ exon 3,4 has been strongly associated with type 2 allergic airway inflammation in 

non-exacerbating asthmatics (20). An isoform that lacks exon 3 (Δ exon 3) is relatively 

less potent than the full-length IL-33, but it is constitutively active and contributes to 

proinflammatory signaling (21). Namely, it lacks caspase-1 cleavage site to elude caspase-1-

dependent inactivity during apoptosis making it resistant to cleavage-dependent inactivation 

(22).

Soluble ST2 (sST2) acts as a decoy receptor for IL-33, and quenches IL-33 to thereby 

reduce IL-33-ST2-dependent inflammatory signaling (23, 24). Similarly, a soluble IL-1 

receptor accessory protein acts synergistically with sST2 to block IL-33 signaling (24, 

25). Targeting these soluble receptor proteins for IL-33 could be of therapeutic interest in 

allergic and non-allergic airway inflammatory diseases. Several lung diseases are associated 

with high levels of sST2 including asthma (26), idiopathic pulmonary fibrosis (IPF) (27), 

chronic obstructive pulmonary disease (COPD) (28), and acute respiratory distress syndrome 
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(ARDS) (29). Although the significance of elevated sST2 expression in these diseases 

remains unknown and may represent a negative feedback system, sST2 could be considered 

a biomarker of airway inflammatory disease.

Role of Nuclear Localization of IL-33

Functional information available on IL-33 is based on the known interaction between 

IL-33 with its receptor ST2 and downstream MyD88-dependent signal transduction. IL-33, 

however, is a nuclear protein bound to the heterochromatin and mitotic chromosomes, 

and thus possesses potential transcriptional repressor properties like other nuclear alarmins 

including IL-1α and high mobility group box protein 1 (HMGB1) (30, 31). A conserved 

consensus nuclear localization sequence in the N-terminal region of IL-33 determines its 

nuclear localization (31). Although a strong dual function is predicted for IL-33, future 

studies are warranted to understand the functional role of nuclear-bound IL-33 in regulating 

airway disease. A recent report suggests that the chromatin binding of IL-33 acts as a 

post-translational modification in esophageal epithelium to regulate its release, availability, 

and bioactivity (7). Another report, however, emphasizes a novel homeostatic role of the 

nuclear IL-33 in fibroblast differentiation in renal interstitial fibrosis (2). Nuclear IL-33 

also has been shown to increase p65 transcript levels as it binds to the NF-κB promoter in 

endothelial cells (32). It is plausible that nuclear IL-33 has distinctive roles in different cell 

types. Specifically, utilizing ST2 and IL-33 knock out mice, nuclear IL-33 was proposed to 

serve as a checkpoint in epithelial stem cells including basal and type II alveolar epithelial 

cells for their growth and survival (8). Collectively, emerging evidence support an active role 

of nuclear IL-33 in maintaining homeostasis, growth, and repair; thereby, underpinning the 

importance of future studies to investigate the precise role of nuclear localization of IL-33 in 

airway disease.

Post-Translational Modification of IL-33

Reversible or irreversible post-translational modifications regulate protein function 

and expression levels (33). These modifications include phosphorylation, acetylation, 

ubiquitination, methylation, glutathionylation, citrullination, among others (33). Most 

known post-translational modifications in IL-33 are related to its proteolytic cleavage 

leading to diverse functional outcomes. The full-length IL-33 is cleaved by mast cell 

chymase (34, 35), tryptase (35), and neutrophil proteases such as elastase, and cathepsin 

G (35) to highly active forms. The active full-length form is inactivated by caspase-1, 3 

and 7 during apoptosis to reduce or prevent the inflammatory cascade (22). Interestingly, 

neutrophil-derived proteinase 3 appears to have a dual role in IL-33 processing (36). It 

cleaves the full length IL-33 to promote bioactivity (35, 36), but with prolonged exposure, 

proteinase 3 decreases IL-33 bioactivity (36) (Figure 1). Others report regulation of IL-33-

ST2 axis by ubiquitination processes (37–39). For example, FBXL19 is an ‘orphan’ member 

of the Skp1-Cullin-F-box family of E3 ubiquitin ligases that selectively binds ST2 leading 

to its polyubiquitination and proteasomal degradation in a murine model of pneumonia (37), 

resulting in reduced inflammatory signals.
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IL-33 and Oxidative Stress

Although oxidative stress can trigger inflammatory processes, it is counterintuitive that 

IL-33 would be inactivated in the presence of oxidative radicals. However, oxidation of 

cysteine residues in IL-33 results in conformational change (i.e. formation of two disulfide 

bonds) in the high-affinity ST2 binding site region (40). Because of this conformational 

change, oxidized IL-33 is unable to bind to ST2, and therefore, oxidative stress inhibits 

inflammatory signal transduction (40). The kinetics of this process remains unknown, 

but likely plays an important role in modulating allergic and non-allergic airway disease 

processes.

Glutathione (GSH)-protein adducts are also oxidative post-translational modifications that 

modulate IL-33 protein levels and function (41). Glutaredoxins are enzymes that catalyze 

removal of protein bound GSH to keep protein thiols in a reduced state without direct 

antioxidant effects (41). Lipopolysaccharide (LPS) increases glutaredoxin-1 in macrophages 

resulting in activation of NF-κB by de-gluathionylation (i.e. removal of GSH adducts) via 

TRAF6 to result in an increase in IL-33 transcription and translation (42).

An imbalance between reactive oxygen species (ROS) and antioxidants can result in 

oxidative stress in chronic lung diseases including allergic asthma (3). A recent report 

suggests that oxidative stress-induced activation of type 2 immune response is dependent 

on ATP-bound Ca2+ uptake resulting in IL-33 secretion from bronchial epithelial cells in 

humans and mice (43). High oxidative stress, particularly related to superoxide radicals, 

increase IL-33 transcripts and protein levels and release to BALF in allergic airway 

inflammation (3). Additionally, IL-33 stimulates NOX2 (nicotinamide adenine dinucleotide 

phosphate (NADPH) oxidase) transcript levels in human peripheral blood eosinophils (44). 

In summary, an important relationship exists with IL-33 and oxidative stress at the level of 

transcription, translation, and post-translational processes that could be further explored and 

exploited to regulated airway disease.

IL-33 in Allergic Asthma

As a potent promoter of type 2 immune response, IL-33 has been studied most extensively 

in allergic asthma. After engaging the ST2 receptor, IL-33 stimulates production of Th2 

cytokines including IL-5, IL-9, and IL-13 from a variety of immune cells including ILC2, 

Th2, mast cells and macrophages.

Respiratory viral infections can increase the risk of developing allergic asthma and/or 

asthma exacerbation. Of these, respiratory syncytial virus (RSV) has been demonstrated 

to augment IL-33-dependent allergic airway inflammation in an ovalbumin model of 

mice (45). Considering the importance of IL-33 signaling in allergic asthma, several 

biologics are being developed and tested as therapies. Monoclonal antibodies against 

ST2, RG6149 (46), and CNTO7160 (47), or against IL-33, ANB020 (46), REGN3500 

(46), and MEDI3506 are already in or have completed clinical trials. An overview 

of current clinical trials investigating IL-33 are summarized (Table 1). A high-affinity 

monoclonal antibody againstdokimab (LY3375880), is currently in preclinical stages to 

block IL-33-dependent inflammatory signaling (48). Because of inherent immunogenicity 
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with monoclonal antibodies, a new direction of biologics has also emerged that includes 

natural peptide sequences to block IL-33 signaling. IL-33trap is an IL-33 antagonist that 

has a fusion protein containing extracellular domains of ST2 and IL-1 receptor accessory 

protein (49, 50). It has been suggested that this IL-33trap is more efficient in blocking the 

IL-33 signaling than the natural decoy receptor sST2 with less immunogenicity (49, 50). 

As insights into the complexities of IL-33/ST2 signaling mechanisms continue to rapidly 

evolve, it is anticipated that several novel therapeutic options will emerge to target and 

reduce airway disease burden.

IL-33 in Chronic Obstructive Pulmonary Disease

Chronic bronchitis and emphysema are hallmarks of COPD marked by destruction of 

alveoli and loss of type II alveolar epithelial cells, peribronchiolar fibrosis and typically 

driven by Th1/Th17 processes (51, 52). Asthma-COPD overlap (ACO) is also recognized 

as a disease entity representing an admixture of asthma and COPD-like inflammatory 

profiles (53). Serum IL-33 levels are positively correlated with COPD exacerbation and 

poor lung function (54, 55). Additionally, plasma IL-33 correlates with eosinophilia and 

chronic bronchitis in stable COPD patients (56). However, no difference in IL-33 levels 

have been observed between asthma and COPD patients in serum, bronchial mucosa, 

and induced sputum (57). In humans with COPD, IL-33 expression is associated with 

mucin expression and airway basal epithelial cells with early progenitor phenotype (58). 

Lung tissue expression of IL-33 is increased in COPD patients (52) and is related to the 

disease severity (58). Lung IL-33 is also selectively increased in murine models of COPD 

following viral infections (58), suggesting a role in disease exacerbations. Considering the 

heterogeneity among COPD patients, additional studies are warranted to understand the role 

IL-33 plays at different stages and phenotypes of disease.

IL-33 in Interstitial Lung Disease

Interstitial lung disease, particularly idiopathic pulmonary fibrosis (IPF), is a progressive 

fibroproliferative disease associated with the deposition of extracellular matrix proteins and 

classical Th2 cytokines such as IL-4, IL-5, IL-9, and IL-13 (59). An increase in IL-33 

lung expression and serum levels are demonstrated in IPF (52, 60), albeit one report did 

not find any difference in the serum IL-33 levels between control and IPF patients (61). 

Others demonstrate increased serum soluble ST2 of IPF patients with acute exacerbation 

(27). Lung IL-33 expression in IPF occurs in the nucleus and cytoplasm of endothelial cells, 

macrophages, type II alveolar epithelial cells, other mesenchymal and/or progenitor-like 

cells (52). In the bleomycin model of murine pulmonary fibrosis, serum IL-33 levels are 

elevated and strongly correlated with lung fibrosis (62, 63). Consistent with IPF, persons 

with rheumatoid arthritis-associated interstitial lung disease also had increased serum IL-33 

levels (64) and lung tissue IL-33 expression (65). Correspondingly, mouse models of 

RA-associated lung disease demonstrate increased expression of lung IL-33 in disease 

pathogenesis (65).

IL-33 in COVID-19

Infection with SARS-CoV-2 virus results in the release of IL-33, and elevated serum IL-33 

levels have been strongly associated to the severity and adverse outcomes in COVID-19 
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(66). Conversely, lung IL-33 expression is exhausted (depleted) in post-mortem lungs of 

COVID-19 patients, and in one case of post-COVID lung fibrosis, IL-33 lung expression 

is markedly elevated (52). Collectively, these observations support a time-dependent role 

for IL-33 with disproportionately increased levels at an early-stage infection, followed by 

depletion, and potential increase with lung remodeling events.

The mechanistic role of IL-33 in COVID-19 and/or other viral infections may be related 

to interferon (IFN) regulation (67, 68). It is well-recognized that viral infections result 

in increased release of IFN as well as IL-33 levels, and IFNγ inhibits activation and 

proliferation of type II innate lymphoid cells through an IL-33-dependent pathway and 

promotes Th1 immune response (69). Conversely, IL-33 supplementation increases IFNγ 
levels by promoting γδ T cells and NK cells in a murine model of sepsis and improves 

survival rate (70). In turn, IFNγ downregulates IL-33 mRNA and protein levels in lung 

fibroblasts (71). This complex relationship between IFNs and IL-33 necessitates further 

studies to understand the relationship in context to cell phenotype, time course, and/or 

microenvironment. A strong and early interferon host response is beneficial to reduce viral 

infectivity (72); however, it is possible that a corresponding and robust early IL-33 response 

could mitigate anti-viral responses and/or could lead to an unchecked adverse systemic 

inflammatory response. Additional studies are needed to understand the precise relationship 

of IL-33 in viral lung infections as a potential biomarker of disease severity and whether 

therapeutics aimed at IL-33 are warranted.

Conclusion/Future Directions

The multiple layers in the regulation and function of IL-33 underscore its complexity 

in allergic and non-allergic airway inflammatory diseases. IL-33 splice variants as 

compared to full-length IL-33 play strong roles in modulating airway disease. Transcript 

variants of the IL-33 receptor ST2 impact function noting that the soluble ST2 inhibits 

IL-33 signaling by quenching free IL-33. Oxidation of IL-33 inactivates IL-33, while de-

glutathionylation can activate IL-33 expression and signaling. Although receptor signaling 

through ST2 has been relatively well-studied, the functional role of nuclear IL-33 remains 

unclear. Understanding the immunobiology of IL-33 regulation and signaling is important 

considering the pivotal role it plays in allergic and nonallergic airway diseases. IL-33 may 

be an important biomarker of airway disease, and moreover, clinical therapeutic strategies 

targeting IL-33/ST2 are currently underway in asthma and COPD.
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Figure 1. Schematic of IL-33 immunobiology.
IL-33 transcription and translation is controlled by many factors including oxidative stress. 

Different transcript/splice variants of IL-33 result in a variety of IL-33 proteins with 

differential activity in health and disease. Pro-IL-33 is cleaved by chymase, tryptase, 

elastase, cathepsin G and proteinase 3 to give rise to an active full-length IL-33. The 

full-length IL-33 can be inactivated through cleavage by caspase-1, 3, and 7, and proteinase 

3. IL-33 protein can also be inactivated by oxidization leading to formation of disulfide 

bridges. If not inactivated, the full-length IL-33 binds to the ST2-IL1-receptor accessory 

protein complex to induce signal transduction via MyD88-TRAF6-IRAK1/4 to induce NF-

κB and/or AP-1 through MAPK pathway. Activation of these transcription factors result in 

an increase in transcription of Th2 cytokines such as IL-5, IL-9, and IL-13. Nuclear IL-33 is 

stabilized by de-ubiquitination through USP21 and USP17 to either stimulate IL-13 or to do 

repression or newly discovered functions.
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Table 1.

Clinical trials related to therapeutic or biomarker relevance of IL-33 in lung disease.

# Identifier Title Site Status Sponsor

1 NCT03984383 IL-33, Endocan and Endothelial Cells (IL- 33) France Not recruiting 
yet

Univ Hospital, Lille

2 NCT00707811 Evaluation of ST2 and IL-33 in Patients Presenting to the 
Emergency Department With Trouble Breathing

USA Unknown The Cleveland Clinic

3 NCT02492204 The Role of IL33/ST2 Axis in ARDS Patients Spain Completed Hospital Univ Vall 
d’Hebron Research 
Institute

4 NCT03546907 Proof-of-Concept Study to Assess the Efficacy, Safety 
and Tolerability of SAR440340 (Anti-IL-33 mAb) in 
Patients with Moderate-to-severe Chronic Obstructive 
Pulmonary Disease (COPD)

USA Completed Sanofi & Regeneron

5 NCT04701983 Study to Assess the Efficacy, Safety, and Tolerability 
of SAR440340/REGN3500/Itepekimab in Chronic 
Obstructive Pulmonary Disease (COPD) (AERIFY-1)

USA Recruiting 
phase 3

Sanofi & Regeneron

6 NCT04751487 Study to Assess the Efficacy, Safety, and Tolerability 
of SAR440340/REGN3500/Itepekimab in Chronic 
Obstructive Pulmonary Disease (COPD) (AERIFY-2)

USA Recruiting 
phase 3

Sanofi & Regeneron

7 NCT04256044 Analysis of Peripheral Blood ILC2s and Th2 Cells in 
Response to ANB020

UK Completed University of 
Leicester

8 NCT03615040 Anti-ST2 (MSTT1041A) in COPD (COPD- ST2OP) UK Completed University of 
Leicester

9 NCT02289391 Effect of Dexmedetomidine on Levels of Plasma 
Inflammatory Factor in Asthma Patients Undergoing 
General Anesthesia

China Unknown Second Affiliated 
Hospital of Xi’an 
Jiaotong University

10 NCT01973751 Asthma Biomarkers for Predicting Response to Therapy China Unknown Tongji Hospital

11 NCT03423693 Small Airway Obstruction in Asthma, COPD, ACOS Thailand Recruiting Mahidol University

12 NCT03960359 Inflammatory and Immune Profiles During a Severe 
Exacerbation in Preschool Asthmatic Children (<5 Years) 
(VIRASTHMA2)

France Active, not 
recruiting

University Hospital, 
Lille

13 NCT03563521 Identifying Serum Cytokine Profiles of Distinct 
Inflammatory Phenotypes in Severe Asthma

Turkey Completed TC Erciyes 
University

14 NCT04570657 Study to Assess the Efficacy and Safety of MEDI3506 
in Adults with Uncontrolled Moderate-to-severe Asthma 
(FRONTIER-3)

81 global 
sites

Recruiting AstraZeneca

15 NCT04319705 Anti-viral Effects of Azithromycin in Patients with 
Asthma and COPD (AZIMUNE)

Denmark Recruiting Bispebjerg Hospital

16 NCT04631016 A Phase II, Randomized, Double-blind, Placebo-
controlled Study to Assess MEDI3506 in Participants 
with COPD and Chronic Bronchitis (FRONTIER-4)

126 global 
sites

Recruiting AstraZeneca

17 NCT03112577 Study of REGN3500 and Dupilumab in Patients with 
Asthma

USA & UK Completed Regeneron & Sanofi
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